Idiopathic Intracranial Hypertension Update

Chris Borgman, OD, FAAO
Southern College of Optometry
Memphis, TN

COPE Disclosures:

• I do not have any relevant financial relationships to disclose.
• The content and format of this course is presented without commercial bias and does not claim superiority of any commercial product or service.

Disclosures...

• I have no disclosures to report.
• I'm not perfect...
• Don't look ahead!
• References available....if you want them.
• Questions??
 • Email me: cborgman@sco.edu

Idiopathic Intracranial Hypertension (IIH)

• Aka: Pseudotumor Cerebri (PTC)
• Defn: increased ICP without a mass effect and with normal CSF composition
• MOA: intracranial venous drainage obstruction ; decreased CSF drainage
• F>>M (90% vs. 10%); females of child-bearing age
• Risk factors = obesity (70% of IIH), delayed CSF absorption, venous outflow abnormalities/increased cerebral venous sinus pressure
• *Headaches = 90% of cases
 • Most common Sx
• *Papilledema = most common Sn; 89-95% of cases

Modified Dandy’s Criteria (Revised 2008)

1. Absence of mass lesion or hydrocephalus with CT or MRI
2. Elevated CSF opening pressure upon lumbar puncture with normal CSF profile
 • Non-obese patient >200 mmH2O = Abnormal
 • Obese patient >250 mmH2O = Abnormal
3. Intact neurological exam with the exceptions of visual disturbances, and/or 6th nerve palsy, and/or papilledema

Idiopathic Intracranial Hypertension (IIH) Symptoms

1. *Headache (worse upon awakening) (90%)
2. Transient Vision Loss (62%)
3. Pulsatile Tinnitus (48%)
4. Blurred Vision
5. Vomiting
6. Diplopia

PTC/IIH Symptoms

1. *Headache (worse upon awakening) (90%)
2. Transient Vision Loss (62%)
3. Pulsatile Tinnitus (48%)
4. Blurred Vision
5. Vomiting
6. Diplopia
PTC/IIH signs...

• **Papilledema!** In up 95% of cases! (Puffer et al. 2014)

• "With rare exception, all PTC/IIH patients have papilledema, a hallmark of subacute intracranial hypertension.” —Galgano et al. (2013)

• Although papilledema is present in the vast majority of PTC/IIH patients, its absence it not an exclusionary criteria.” —Galgano et al. (2013)

Ocular work-up in IIH...

• **Visual Acuity**
• **Visual Fields**
• **EOM’s**
• **Fundus Exam**
• Retinal Imaging (FP, OCT, etc.)
• **Color Vision**
• **Contrast Sensitivity**

Most important to assess in IIH

Visual Acuity and Color Vision in IIH

• **Visual Acuity:**
 • Acuity tests foveal function
 • Not typically affected unless edema extends into central 10° of fixation

• **Color Vision:**
 • Only been found to be abnormal in ~20% of cases
 • Ishihara defects only noted in the existence of moderate to marked visual loss and optic atrophy
 • Not the most reliable way to follow patients

EOM’s/VF’s in IIH...

• **EOM’s:**
 • If present, uni/bilateral 6th nerve palsies are present 2° stretching nerve between apex of clivus bone/Dorello’s canal and exit zone of 6th nerve on brainstem
 • Dilation required in all 6th nerve palsies to rule out/in papilledema per Will’s Eye

• **Visual Fields:**
 • "Most important test to follow for changes"
 • Enlarged blindspot first to show, followed by generalized constriction, and nasal defects.
 • Any kind of defect is possible though...

VF’s in neuro-optometry.... Is testing the central 30° enough?

• "Humphrey SAP has replaced Goldmann perimetry in clinical practice despite fears that peripheral visual field defects may be missed. This fear seems unwarranted as only 1.2% of patients with nonglaucomatous VF defects have abnormalities in the peripheral field beyond 30° degrees in the absence of central field defect."

• Alternatively said... 98-99% of neurological VF defects will show up in the central 30° when tested... pretty good odds!

Neuroimaging/workup in IIH...Order is important...why???

1. Order MRI/MRV first

2. Followed by lumbar puncture if MRI/MRV is normal
 • >200 mmH2O in nonobese patients = abnormal
 • >250 mmH2O in obese patients = abnormal

• Herniation through foramen magnum can compress upper medulla which is where the respiratory and cardiovascular centers are located → Death
What are we looking for in work up?

- **MRI**
 - Rules out space occupying mass, hemorrhage, etc.
 - Empty sella, pituitary deformities, distortion of ON, posterior globe flattening
- **MRV**
 - Rules out transverse sinus stenosis and/or venous sinus thrombosis
- **Lumbar Puncture (LP)**
 - Document elevated opening/Intracranial pressure
- **LP cytology**
 - Rule out infectious meningitis, blood, and other possible issues/cause

Where is CSF made again???

![Diagram showing where the ventricles are in the brain](https://commons.wikimedia.org/wiki/File:Diagram_showing_where_the_ventricles_are_in_the_brain_CRUK_387.svg)

Where does CSF drain to?

- CSF is absorbed from the subarachnoid space across the arachnoid villi into the venous circulation.
- The arachnoid villi act as one-way valves between the subarachnoid space and the dural venous sinuses. The rate of absorption correlates with the CSF pressure.
 - "Pressure gradient valves"
- Dural Venous Sinus Thrombosis important to rule out with MRV!

![Diagram showing CSF drainage pathway](https://en.wikipedia.org/wiki/Ventricular_system)

Pathophysiology of IIH...

- Any blockage along this CSF drainage pathway or in the venous sinus drainage can result in increased ICP!
- **Bottom Line MOA = obstruction of intracranial venous drainage**

PTC /IIH Treatment Options...

1. Weight loss (5-10% is sometimes curative!)
2. Carbonic anhydrase inhibitors (6-50% less CSF production)
 - Acetazolamide and/or Topiramate
 - No oral steroids ➔ weight gain
3. Ventriculoperitoneal Shunt / Lumboperitoneal Shunt
 - Headsaches only; vision stable
4. Optic Nerve Fenestration
 - Vision/Visual Field worsening; no headaches
5. Venous Sinus Stenting
 - In venous sinus fenestration

Topamax vs. Diamox?

- **Acetazolamide** ➔ CAI inhibitor; works on ciliary body and choroid plexuses
- **Topiramate** ➔ novel anticonvulsant with many MOA; epilepsy/migraines
- Sulfonamide drug... be careful of sulfa allergies
- Also has carbonic anhydrase inhibition component; and decreases appetite
 - Weight loss of 5-10% alone may be curative in some cases of IIH
 - Average weight loss of 7% was obtained in one year on medication
 - Monitor for angle closure glaucoma and myopic shift!!!!
 - 85% of this happens within first 2 weeks of therapy
 - Cilioretinal infusion occurs
 - MGE ➔ ventricular/head effusion and ciliary edema causing forward displacement of the lens-iris diaphragm with resultant narrowing of the anterior chamber.
 - No need; cycloplegic and IOP lowering meds may be needed. LP not helpful.
How long should CAI’s be maintained?

• Can/Should Tx ever be discontinued once Sn/Sx are under control?
• A long-term follow-up study was done in PTC patients using a CAI (acetazolamide) over 6.2 years.
• 54 total patients followed for over 6 years
• 60% of patients experienced multiple recurrent episodes over this time span
• None of the recurrences occurred while maintained on acetazolamide!
• Good evidence to maintain long-term Tx???

What was being investigated?

• To determine whether acetazolamide is beneficial in improving vision when added to low-sodium weight diet in patients with IIH and mild vision loss.
• The purpose of the trial was to determine the effect of acetazolamide in reducing or reversing visual loss after 6 months of treatment when added to a weight-reduction program.
• N=165 (86=acetazolamide & diet, 79=placebo & diet)
 - Completed: n=126 (69 vs. 57)
 - 2 to -7 dB perimetric mean deviation at baseline
 - Acetazolamide initial dosage = 500 mg BID PO
 - Increase in 250 mg tablet every week up to 4000 mg/day!!!

Outcomes being measured...

• Primary outcome = change in PMD from baseline → 6 mo in most severe eye
• Secondary outcomes
 • change in PMD from baseline → 6 mo for better eye
 • papilledema grade
 • CSF pressure
 • visual acuity
 • QOL
 • vital signs
 • lab results
 • presence of HA
 • treatment failure

Visual Field Findings...

- Acetazolamide/Diet = 1.43 dB improvement
- Placebo/Diet = 0.71 dB improvement

Papilledema Grading...

- Papilledema grade 3-5 = 2.27 dB improvement
- Papilledema grade 1-2 = 0.67 dB improvement

- Significant improvement in acetazolamide groups in study and fellow eyes with FP’s
- QOL improved too
- Weight change
 - -7.50 kg in acetazolamide at 6 mo
 - -3.45 kg on placebo at 6 mo
- CSF Pressure
 - -12.3 mmHg on acetazolamide at 6 mo
 - -5.4 mmHg on placebo at 6 mo
- No change in headache severity or visual acuity
 - 69% still had headaches on acetazolamide at 6 mo
 - 68% still had headaches on placebo at 6 mo
Adverse Events

- 9 total patients in study dropped out
- Decreased CO2 levels
- Increased Cl- levels
- No changes to sodium
- No liver function changes

Conclusion:
- "In patients with IIH and mild visual loss, the use of acetazolamide with a low-sodium weight reduction diet, compared with diet alone, resulted in modest improvement in visual field function. The clinical importance of this improvement remains to be determined." — NORDIC IIHTT 2014

Pregnancy Considerations...

- **Topamax** = FDA Category D; evidence shows up to 10-20% of dose can be found in infants who are nursing
- **Acetazolamide** = FDA Category C; case reports of placenta crossing; has been avoided in pregnancy in the past...new evidence to suggest otherwise?
- If both are avoided in pregnancy, then sometimes repeat LPs may be necessary in short term to keep ICP down; inherent risks...

National Collaborative Perinatal Project (NCPP) 1959-1974

- “The use of carbonic anhydrase inhibitors (CAIs) has a large pool of human data on which to base clinical decisions. The source is the National Collaborative Perinatal Project (NCPP) conducted by the NIH from 1959 through 1974. This study monitored more than 50,000 mother-child pairs and 1,024 instances of systemic usage of acetazolamide during pregnancy. In the resulting offspring, there were 18 instances of malformations. The predicted number due to chance was 18.06. This suggests that the incidence of malformations from acetazolamide exposure during pregnancy is no greater than the natural incidence. In the same study, there were 12 documented first trimester exposures to acetazolamide. No anomalies were observed in the resulting offspring.” —Steven Odrich, MD (Bronx, NY)

- 12 patients on Diamox 500 mg BID PO during pregnancy
- No adverse side effects nor congenital malformations noted
- Cited the results of the Collaborative Perinatal Project as well
- “In summary, there is no convincing evidence from the literature for the recommendation to limit the use of acetazolamide for IIH in pregnancy. Although the use of acetazolamide might be restricted in the first trimester, this recommendation may have a more medicolegal than medical rationale. It is our recommendation that acetazolamide be considered if the risk of nontreatment (e.g., progressive visual loss) is sufficiently high to warrant its use.”

Surgical Considerations...

1. Headaches only, vision stable (can be used for both HA’s and vision too) — LP shunt, VP shunt
2. Vision loss/VF worsening despite maximal medical Tx — Optic Nerve Fenestration
3. Venous sinus thrombosis — Anticoagulants
4. Venous sinus stenosis — Venous sinus stenting

- Majority can be managed via weight loss and oral meds (Diamox)

Question to y’all:

Is it appropriate for O.D.’s to prescribe Diamox for these patients long term???
1A) Ventriculo-Peritoneal Shunts (VPS) and Ventriculo-Atrial Shunts (VAS) in IIH

1B) Lumboperitoneal shunts in IIH
- L3/L4 or L4/L5 spaces most commonly used
- Drain into peritoneal space like VPS

VPS vs. LPS...
- Ventriculo-Peritoneal Shunt (VPS):
 - Infection rate of 7-15%
 - 20% revision rate at 2 yrs

- Lumbar Peritoneal Shunt (LPS):
 - Infection rate of 1%
 - 50% revision rate at 2 years

- "In short, most shunted PTC patients require multiple revision surgeries during their lifetime."
 ---Galgano MA et al. (2013)

2) ON Sheath Fenestration...
- Defn: make slits in ON sheath to reduce the local pressure around the optic nerves.
- ~50% of unilateral ON sheath fenestration procedures results in resolution of visual symptoms in both eyes.
- Both optic nerves are connected via the subarachnoid tissue around the optic chiasm
- Typically only done for visual Sn/Sx without headaches...
- If headaches ➔ shunt procedure is better option
- Safe and effective up to 10 years per several studies
- Revision rate is usually very low; 1 procedure per lifetime generally

Optic Nerve Fenestration

3) Dural Venous Sinus Thrombosis
DVS Thrombosis Considerations...

- Blood clots in young people are NOT normal...
- If DVST occurs, hematological workup and anticoagulant therapy is required.
 ---Subramanian PS et al. (2014)
- Consider: CBC with diff, CMP, lipid panel, PT/PTT, Protein S, Protein C, Homocysteine levels, Lupus anticoagulant, anticardiolipin, Factor V Leiden, Prothrombin mutation, Antithrombin III mutation, Sickledex screen, hemoglobin electrophoresis

DVS Thrombosis Treatment...

- Rule out clotting disorder, infection, etc.
- Aggressive anti-coagulation (heparin, warfarin, clopidogrel)
- Not a candidate for DVS Stenting in vast majority of cases...
- If anticoagulation and oral CAI's do not work, then may need shunt surgery

Dural Venous Sinus Stenosis (DVSS)

- **Defn**: focal, narrowed section of dural venous sinuses causing back up/turbulent venous blood flow
- *Most common at junction of Sigmoid and Transverse sinuses
- Not a true blood clot like DVST is...
- Treatment = weight loss, oral CAI, and/or DVS Stenting procedure

Dural Venous Sinus Stenting

- **Right transverse sinus is dominant in 73% of cases**
- **MOA**: Increases drainage of venous blood from venous sinus system which helps with the pressure dependent valves, arachnoid villi granulations, allowing them to clear CSF in to the venous system more efficiently/quickly ➔ decreasing intracranial pressure
- High frequency of resolved or improved HA's and papilledema with this method

DVSS in IIH vs. Normals...

- Focal stenosis has been demonstrated in 90+% of IIH patients using advanced imaging techniques.
- Furthermore, focal stenosis in the same sinus territory was only demonstrated in 6.8% of asymptomatic control subjects.
- Might be on to something here....
DVS Stenting...

- Not every patient is a candidate for DVS Stenting
- **Criteria Needed:**
 1. Presence of venous sinus stenosis (MRI/MRV) - not thrombosis...
 2. Transvenous manometry across the stenosis > 10 mmHg differential
- Catheter with stent and manometer placed in femoral vein and “fished” upwards to location of sinus stenosis
- **Post-Op Medications:**
 - Plavix 75 mg x 6-12 weeks then d/c
 - ASA 325 mg for life

Transvenous Manometry in IIH

- **Significant:** >10 mmHg pressure differential of proximal vs. distal locations in respect to stenosis

<table>
<thead>
<tr>
<th>Differential Example:</th>
<th>Pre Stent = 31 mmHg</th>
<th>Post Stent = 1 mmHg</th>
</tr>
</thead>
</table>

Dural Venous Sinus Stenting for IIH

- **Optometry IIH/PTC Summary...**
 - Make the diagnosis
 - Get MRI/MRV
 - Refer for LP
 - Neurology should start Diamox/Topamax
 - Monitor x 1 month post med Tx, then q3-4 months until resolution/stability (Varies)
 - Serial OCT, FP, and HVF’s are necessary to gauge Tx/stability
 - Relay findings to managing neurologist/PCP regularly.
 - Encourage weight loss

Suboccipital/Subtemporal Cranial Decompression

- Very invasive; but historically pretty successful...
- Remove part of skull to allow for more room inside...
- Not gold standard anymore
- Can be used in severely refractory cases unresponsive to traditional surgical procedures for ICP and IIH

References

- [Link](https://en.wikipedia.org/wiki/Stent)
Questions???

• Thanks!!!

• Email: cborgman@sco.edu